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Chapter 7
First Order and Second Reliability Methods

7.1

7.2

Introduction

As discussed in Chapter 6, reliability is defined as the probability of a performance
function g(X) greater than zero, i.e. P{g(X)>0} . In other words, reliability is the

probability that the random variables X =(X,,X,,---, X)) ae in the safe region that is
defined by g(X)> 0. The probability of failure is defined as the probability P{g(X) <0} .
Or it is the probability that the random variables X =(X,,X,,---, X)) are in the failure
region that is defined by g(X)<O0. If thejoint pdf of X is f,(x), the probability of failure
is evaluated with the integral

p=P{g(X)<G = o f(x)dx (7.1)

9(x)<0

Thereliability is computed by

R=1- p,;=P{g(X)>0}= ¢ f (x)dx (7.2

g(x)>0

In this chapter, wo of the most commonly used reliability analysis methods, the First
Order Reliability Method (FORM) and the Second Order Reliability Method (SORM)
will be presented. The basic idea of the methods is to ease the computational difficulties

through simplifying the integrand f (x) and approximating the performance function
g(X) . With the smplification and approximation, solutions to Egs. 7.1 and 7.2 will be
easily obtained.

All the random variables X herein are assumed mutually independent. The methods
discussed can be extended to problems with correlated random variables after those
variables are converted to independent variables.

First Order Reliability Method

The name of First Order Reliability Method (FORM) comes from the fact that the
performance function g(X) is approximated by the first order Taylor expansion
(linearization).

The probability integrations in Egs. 7.1 and 7.2 are visualized with a two-dimensional
case in Fig. 7.1. The figure shows the joint pdf f,(x) and its contours, which are
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projections of the surface of f,(x) on X; - X, plane. All the points on the contours have
the same values of f (x) or the same probability density. The integration boundary
g(X)=0 isaso plotted on X; - X, plane.
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Figure 7.1 Probability I ntegration

The probability integration in Egs. 7.1 or 7.2 is the volume underneath the surface
(hyper-surface for the higher than 2D problems) of the joint pdf f,(x) in the failure
region g(X)< Oor the safe region g(X)> 0. Imagne that the surface of the integrand
f.(x) formsa“hill”. If the hill were cut by a knife that has a blade shaped with the curve
g(X)=0, the hill would be divided into two parts. If the part on the side of g(X)<O0
were removed, the part left would be on the side of g(X)> 0 as shown in Fig. 7.1. The
volume left is the probability integration in Eq. 7.2, which represents the reliability. In
other words, the reliability is the volume underneath f, (x) on the side of safe region
g(X)> 0. Of course, the probability of failure will be the volume underneath f,(x) on

the side of failure regiong(X )< 0, the removed part.

To show the integration region more clearly, the contours of integrand f,(x) and the
integration boundary g(X)=0 are plotted again in the random variable space (X-space)


integrant
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in Fig. 7.2, which is X; - X, plane. The integration for the reliability is performed in the
region where g(X)> 0 while the integration for the probability of failureis performed in
the region where g(X)< 0.

pdf contour o Xl’ Xz)zo

g(X,, X,)<0

Figure 7.2 Probability Integration in X-Space

The direct evaluation of the probability integration in Eqs 7.1 and 7.2 is extremely
difficult. The reasons are multifold. First, since a number of random variables X are
involved, the probability integration is multidimensional. The dimensionality is typically
high for engineering applications. Second, the integrand f,(x) isthejoint pdf of X and is
generally a nonlinear multidimensional function. Third, the integration boundary
g(X)=0 isaso multidimensional and usually a nonlinear function. In many engineering
applications, g(X) is a black-box model (or simulation model), and the evaluation of
g(X) is computationally expensive. Examples of black-box models include finite
element analysis, dynamic ssimulation, and computational fluid dynamics. Because of the
complexities, there is seldom an analytical solution to the probability integration, except
for very special cases. It is adso unpractical using numerical integration to find the
solution due to the high dimensionality in most engineering applications. To this end,
approximation methods, such as the First Order Reliability Method (FORM) and Second
Order Reliability Method (SORM) have been developed in the area of structura
reliability.
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Two steps are involved in these approximation methods to make the probability
integration easy to be computed. The first step is to simplify the integrand f,(x) so that
its contours become more regular and symmetric, and the second step is to approximate

the integration boundary g(X )= 0. ATtERNEIWOISEPSNENTATEICANSOIUGONI the
ROBBIAEGTAONM ! be casly found.

The way to approximate the probability integration divides the methods into two types:
the First Order Reliability Method (FORM) and the Second Order Reliability Method
(SORM). We will discuss FORM first. The procedure of the First Order Reliability
Method (FORM) is described below.

Sep One — Smplify theintegrand

The simplification is achieved through transforming the random variables from their
original random space into a standard normal space. The space that contains the original

random variables X = (X, X,,---, X, ) is called X-space. To make the shape of the
integrand f (x) regular, all the random variables X = (Xl,Xz,---,Xn) are transformed
from X-space to a standard normal space, where the transformed random variables
U=(U,U,--U,) follow the standard normal distribution. The transformed space is

termed as U-space. Recall that a standard normal variable has a mean of 0 and a standard
deviation of 1.0.

The transformation from X to U is based on the condition that the cdfs of the random
variables remain the same before and after the transformation This type of
transformation is called Rosenblatt transformation [1], which is expressed by

Fy (%) =F(u) (7.3)

inwhich F (¥ isthe cdf of the standard normal distribution.

The transformed standard normal variable is then given by

U, :F'lngl(Xi)H (7.4)

For example, for anormally distributed random variable X ~N(ms ), Eq. 7.4 yields

U =F R (0] =F g M X

F .
§&s & s

(7.5)

—

Or

X=m+sU (7.6)
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It should be noted that in the above example the transformation from a normal variable to
a standard normal variable is linear. The genera transformation from a non-normal
variable to a standard normal variable, however, is nonlinear,

After the transformation, the performance function becomes

Y =g(U) (7.7

i3 worthwhile to mention that/aifEFhe tranSformation, the mathematical formulation of
fhe peCianCEURCHORNGR Wil BH&Rge. \//ithout confusion, we will still use g(U) to

denote the transformed performance function in U-space in order to avoid introducing an
additional symbol for the performance function.

After the transformation, the probability integration becomes

p,=P{g(U)<0} = @ f,(u)du (7.8)

g(U)<0

where f ,(u) is the joint pdf of U. Since all the random variables are independent, the
joint pdf is the Pf@@NEE of the individual pdfs of standard normal distribution and is then

given by
@&l ,0
f,u)= OJ_expg 2u s (7.9
Therefore, the probability integration becomes
\ N = 1 & 1 26
= ——exXpe- =U dudu,---du, (7.10)
P« (822<09@ pg > gl 2

It should be noted that after the transformation, the integration in Eq. 7.10 in U-space is
identical to that in Eg. 7.1 in X-space without any loss of accuracy, but the contours of

the integrand f, become concentric circles (or hyperspheres for a higher dimensional
problem). The circular contours are shown in Figs. 7.3 and 7.4. It is obvious that the
integrand f, is easier to be integrated.
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Figure 7.3 Probability Integration after the Transformation
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Sep Two — Approximate the integration boundary

In order to further make the probability integration easier to be evaluated, in addition to
simplifying the shape of the integrand, the integration boundary g(U)=0 will also be
approximated. FORM uses a liner approximation (the first order Taylor expansion) as
shown below.

g(U)» L(U) =g(u’) +Ng(u')(U - u’)’ (7.11)

where L(U) is the linearized performance function, u’ :(ui,u;,---,u;) is the EXpansion

point, T stands for a transpose, and Ng(u') is the gradient of g(U) a u". Ng(u’) is
given by

Ng(u') = (7.12)

aaTQ(U) ﬂg(U) ﬂg(U)
$qU, U, U,
To minimize the accuracy loss, it is natural to expand the performance function g(U) at
a [poiii] that has the In other word, it is

highest contribution to the probability integration.
preferable to the function at the hat has the highest Vel of thelintegrand,
namely, the . With the integration going away from the

expansion point, the integrand function values will quickly diminish. The point that has
the highest probat?l |t densuty on the performance g(U) =0 is termed as the Most
Probable Point (M Plg) ﬁ']erefore the performance function will be approximated at the
MPP. Maximizng the BIRBPARIE) at the limit state of g(U) =0 gives the location of
the MPP. The mathematical model for locating the MPP is then given by

6 maximizing joint pdf f_u(u)
= at limit state of g(U)=0
7] (7.13)

Since
2 1 el o 1 &1 ,0
O ——expE SUPi=——expa- —q U= (7.14)
i=1 \l2p 8 2 g \/2p 8 2|=1 %}
maximizing O 8 —Lg _|s equivalent to minimizing a u?, the model for the
i=1

MPP search can be rewritten as


of failure

maximizing joint pdf f_u(u)
at limit state of g(U)=0


Praobabilistic Engineering Design

fmin|
i (7.15)
fsubjectto g(u)=0

where |[{f stands for the norm (length or magnitude) of a vector, namely,

U=+ i+ = ¢ (7.16)
i=1

The solution to the model given in Eq. 7.15 is the MPP and is denoted by
u :(uluzun) . As shown graphically in Figs. 7.5 and 7.6, the MPP is the shortest
distance point from the limit state g(U)=0 to the origin O in Uspace. The minimum
distance b =|u| is called reliability index.

pdf contour

g(U,, U,)>0

Figure 7.5 Probability Integration in FORM
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Figure 7.6 Highest Probability Density at the M PP

Since at the MPP u’, g(U)=0, Eq. 7.11 becomes

LW)=4 ’%‘f)u*(ui -u)=a,+8 2y (717)
where
8, =- é%ﬁ) u (7.18)
and
a Z‘H‘ITLU?)U* (7.19)

Eqg. 7.17 indicatesthat L(U) is alinear function of standard normal variables. Therefore,
L(U) isaso normally distributed. Its meanis given by
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g Tg(V)
-a—— u (7.20)
m=8,= U, |,
and its standard deviationis given by
=4/é g’ = (7.21)
i=1
Therefore, using Eqg. 4.6, the probability of failure is calculated by
& o]
¢ $ M| o *
”l g i=1 ﬂU' u I — a5 .0
»P{LU)<OQ =F(—) Fg 2+:Fgaaiq+ (7.22)
L ¢ 3 %ﬂg 0 - i=1 (%]
aAc | T
g 261U, 5
u @ ]
where
a, = i) - (7.23)
énaﬂg 9 gradient norm
A, %
Let the vector of a; be
_ _ Ng(u’)
a=(a,a, -,a,)=1=—— (7.24)
The probability of failure can also be written as
»F 8a au .=F (au) (7.25)

in which au™" is the inner (dot) product of the unit vector a and the vector of the MPP
u.

10
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As shown in Fig. 7.7, since the MPP u’ is the shortest distance point from the origin to
the performance function curve g(U)=0, the MPP is the tangent point of the curve
g(U)=0 and the circle with the radius of b . Therefore, the MPP vector U is
perpendicular to the curve g(U)=0. The direction of the MPP can be represented by the
unit vector u’ /Hu*H:u*/b . On the other hand, the direction of the gradient is also
perpendicular to the curve at the MPP, and its direction can be represented by the unit

vector a (see Eq. 7.24). Therefore

u
_= a
b

a~normal vector

o, b~radius

u =-ba

L = norm(u) + lambda * g
grad L = u + lambda * grad g —_—
u = -lambda * grad g

—>
u*=-b*a

u - atangent point

) U,
Figure 7.7 The MPP is A Tangent Point

Therefore, the probability of failure is evaluated by

p, » P{L(U)<0} =F (au™)=F (-baa")=F (- b)

n
Note that in the above derivation, aa” =§ a2 =1 is used.
i=1

The reliability is then given by

R=1- p, =1- F (- b) =F (b)

11

(7.26)

(7.27)

(7.28)

(7.29)


a~normal vector
b~radius

L = norm(u) + lambda * g
grad L = u + lambda * grad g
u = - lambda * grad g
--->
u* = -b * a

這個關係包含約束條件與目標函數
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7.3

The procedure of the FORM is briefly summarized below.

1) Transform the original random variables from X-space to U-space by Rosenblatt
transformation

2) Search the MPP in U-space and calculate the reliability index b .
3) Calculatereliability R=F (b).

MPP Search
From the above discussion, it is noted that the key to calculati ng the probability of failure
or reliability isto locate the MPP in U-space. Since it is very difficult or even impossible
to solve the MPP search moddl in Eq. 7.15 analytically, many numerica methods have
been developed for the MPP search. Next, we will introduce a commonly used MPP
search agorithm.

The MPP search algorithm uses a recursive formula and is based on the linearization of
the performance function. The procedure is demonstrated in Fig. 7.8.

\"
g(uk+l)

g(u)

- Jo g(u") +Rig(u)(u - u)" =0

g(u) +Ng(u*)(u- u)’

Ul
Figure 7.8 MPP Search

Let the MPP in kth iteration be u*. The performance function is linearized at u* as
shown by the lower linein Fig. 7.8. The linearized function is given by

g(u) = g(u*) +Ng(u“)u - u*)" (7.30)

Let the linearized function be zero, then the MPP u*" in the next iteration will be on the
line, namely,
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g(u*™) = g(u“) +Ng(u“)(u*™- u*)" =0 (7.31)
Theline is shown as the upper linein Fig. 7.8. 0
From Eq. 7.27, K
Uk =-pkg«  unitvector of gradient (7.32)

Asshown in Fig. 7.8, since u**! is the shortest distance point from the origin to the line,

vector u*"* is perpendicular to the line and is directed from the origin O to u**. a¥,

which is the unit vector of the gradient, is also perpendicular to the line and in the
opposite direction to u*"*. Because the magnitude of u**! is the distance from the origin
to u*** (reliability index), then

uk+l —_ b k+lak (733)
-_ o000
- - - 1.g=0b_{k+1j 0O
Substituting u* in Eq. 7.32 and u“~in Eq. 7.33 into Eq. 7.31 yields 0 -->0 b KO O

o0--o0oood
g(uk) + Ng(uk)(ak)T(b k_ b k+l) = g(uk) +HNg(uk)H(bk _ bk+l) =0 ?__Ciett?% k delta x

) ) deltax = deltay / k
Rearranging Eq. 7.34 gives (y~g x~u k~gradient g)

3. dimension match
prtzpks 9D SHEE (7.35
HNg(uk)H for exp g BN] and
gradient g [N/m]
---> after g / (gradient g)

Therefore, the updated point is given by a~normal vector--> [m] which matches
b[m]
i ky
uk+l = a.k !, bk + ~g(u ) y (736)
P k i
i [Nowlp

To use the recursive formula in Egs. 7.35 and 7.36, a starting point u®is required.

Usually, the origin u® =0 is set as the starting point. Three convergence criteria may be
used to terminate the MPP search process.

1) If Hu"”- u"H£el, stop;
2) If HNg(uk+1)- Ng(uk)“Eez,stop; or
3) If [o* - b¥£e,, stop.

e, e,, and e, arevery small quantities.

13


a~normal vector

unit vector of gradient

點乘--得到一個標量

g--標量
除以梯度絕對值


直覺解釋
1.g = 0 b_{k+1}不再變化-->與b_k一致

2.delta y = k delta x
--->
delta x = delta y / k
(y~g x~u k~gradient g)

3. dimension match
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---> after g / (gradient g) --> [m] which matches b[m]

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

拉格朗日函數 一階導數=0


Praobabilistic Engineering Design

The flowchart of the MPP search is shown in Fig. 7.9.

Input starting Point

A u()
U=y, b=|ull
A
Ng(u)
» a=-—
[Ng(u)]
b =b 9(u)
[Ng(u)]
U=U, b = bne'w
A
U, =-ab

JUney - Ul £ €,
INg(u,,) - Ng(u)| £ e,
|0 - B|£ &

new

Figure 7.9 The Flowchart of the MPP Search

The above MPP search algorithm is easy to use and program and the algorithm
converges quickly. Because of the good features, it is widely used in the field of
structural™ feliabil ity et “provabilistic engineering design. However, it may fail to
converge for some problems, for example, oscillating among two or more points without
convergence, or diverging away from the solution. If divergence occurs, one may

14
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consider using other MPP search methods or using optimization techniques. We will
discuss optimization later in this book.

Example 7.1

The strength and maximum stress of a mechanical componert, X, and X,, are normally

distributed. X; ~N(200,20)MPa and X, ~ N(150,10)MPa. Use FORM to compute the
probability of failure of the component.

The performance function is given by
9(X) =X, - X,

For the normally distributed random variables X, and X,, using the transformation
givenin Eq. 7.6, the performance function becomes

gU)=m+sU,- (m+s,U,) =200, - 10U, +50

The performance function g(U) is plotted in Fig. 7.10. For this linear performance

function, it is shown that the shortest distance point u is the intersection of the
perpendicular line drawn from the origin O to the line of the limit state g(U) =0. The

MPP u" can be found graphically using the above geometric condition. It can also be
solved by the above MPP search algorithm. If the MPP search algorithm is used, only one
iteration is needed because of the linear performance function.

1.5 T T T T T T

1k u(-2, 1) -
b
0.5 1
_ao
U2
0
O
9(U)=10U,-20U -50=0

05F _
1 I 1 1 I 1
3.5 3 25 2 15 1 0.5 0 0.5

Figure 7.10 TheLinear Performancein U-Space

15
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The search process starts from the initial point u® =(0,0) . At this starting point,

Ng(uo):gaﬂg M9 9_ 20.-10), g(u®) =50, |Rig(ue )H_J 20)° +(- O)° =22.3607,

Using Eq. 7.36, the MPP is found at

g(u) H_ - (0.8944, - 0.4472) 0 =(-2.0,1.0)

i
d 'ao b™+ [Ng(u )Hy 22.3607

Thereliability index is
b = |u’|=22361
The probability of failureis calculated by
p, =F (-b)=F(-2.2361) =0.0127

An analytical solution to this simple problem exists. Since g(X) isalinear combination
of normaly distributed random variables X, and X,, g(X) aso follows a normal
distribution. Its mean and standard deviation are

m,=m-m =30
and
S, = /oY +arf =15.6205
sqrt(20**2 + 10*+2) = 22.36
respectively.

The accurate solutionis

) - .
oF :P{g(X)<O}:Fg S%__Fgo 50 ;

(7]
22.36

F (- 2.2361) = 0.0127

It is noted FORM produces an accurate solution to the probability of failure for this
specific problem where the performance function is linear in term of normally distributed
variablesin U-space.

16
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Example 7.2

A cantilever beam is illustrated in Fig. 7.11. One of the failure modes is that the tip
displacement exceeds the allowable value, D,. The performance function is the difference
between D, and the tip displacement, and the function is given by

g=D, - Jﬁ’o &Po

° Ewt\gt? 5 8w2g

where D, =3, E=30" 10°ps isthe modulus of elasticity, L =100 isthe length, wand t
are width and height of the cross section, respectively, and w=2'and t=4". B, and P,

are external forces with norma  distributions B, ~ N(500,100)lb  and
P, ~ N(1000,100)Ib .

L P,
t <+ Px
w

Figure 7.11 A Cantilever Beam

v

The probability of failure is defined as the probability of the allowable vaue less than the
tip displacement, i.e.

=Pig=D,- £O
Ps %g 0 Ewt gt p 8W2ﬂ )é

First, the normaly distributed variables P, and P, are transformed into the standard
normal variables

| \/BEPO P, & f

& -m P,-m o
U=, U, =gt T
P Sk @

Or

X =(px,py) :(m’X +UXSPX,r‘r]3y +UyS Py)

The transformed performance function in U-space becomes

17
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asm,+Uyspo aem,+UXsPo
901" o ¢ L, & w
g e )

The gradient of g(U) isgiven by

& 5

¢ =

Rguy =28 (M +U,s.)s, (M +U,s,)s, :
Evvt aEm,+UySy92 am+UXSX92 " m+uysy92+am+ux5x92j

g g t? 17 é w? 17} 8 t2 p g W2 p g

The starting point of the MPP is set to u® =(0,0) .

Iteration 1

At W =(0,0), g(u’) = 067076, Ng(u®) = (- 0.37268, - 0.046585),
HNg(uO)H = /(- 0.37268)" +(- 0.046585)" = 0.3756,

- NOW) _ 09003, - 0.1240), and b°=[u’|=0
e

Using Eq. 7.36 produces a new point

g(u ) P =-(-0.9923, - 0.1240) 0. 670766 =(1.7722, 0.22152)

u1:-a°J|[b0
f

lteration 2

At u' = (17722, 0.22152), g(u*) =-0.015931, Ng(u") =(- 0.38984, - 0.036775),
|Nig(ut)| = /(- 0.38984)" + (- 0.036775)" =0.3916,

at = NIW) _ (09956, - 0,0939), and b= |ul| =1.7859.
- [Roe))

Using EQ. 7.36 again produces a new point,

18
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2 1'\[b1 g(u) P
T TRewfy

= (1.7375, 0.16391)

- 0.0159316

= - (- 0.9956, - 0.0939) H.7850+ 0
& 0.3916 &

The process continues until the solution converges. The search determines after 4
iterations because the solutions in iteration 4 are very close to those in iteration 3 The
complete convergence historyisshownin Table 7.1 and Fig. 7.12.

Table7.1 MPP Search History

lteration b g Ng u,Y,)
0 0 0.67076 (-0.37268, -0.046585) | (1.7722, 0.22152)
1 1.7859 -0.015931 (-0.38984, -0.036775) | (1.7375, 0.16391)
2 1.7453 -0.00032102 (-0.38986, -0.036758) | (1.7367, 0.16375)
3 1.7444 -2.6004e-009 (-0.38986, -0.036761) | (1.7367, 0.16376)

2

g(Ul, U2)<0
18f 1 024}
g(Ul, UZ):O
161 023}
14 022+ b
12} L ol
u, It g(U,, =0 U, 02
asl ot g(U, U0 A, 70
ver 013k
oar ut
o2t Lt “ vy
117',112',u4 / 016k “3,“4/
% 05 ‘

L ! ! !
171 172 173 1.74 1

I I I I I
75 1.76 1.77 178 178

u

1

(a) The MPP search history in U-space

(b) Enlarged portion, the dotted box in (a)

Figure 7.12 The MPP Search History in U-Space

TheMPPisfoundat u” =(1.7367, 0.16376), and the reliability index is b =1.7444. The
probability of failureis

p; = F(-1.7444)=0.04054
And thereliability is

R=1- p; =1- 0.040541=0.9595

19
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In the above case, al the random variables are normally distributed. FORM can also
handle non-normal variables. For exanple, if both B, and P, follows lognormal

distributions with the same means and standard deviations, the probability of the failure
calculated from FORM is p, = 0.0531.

Example 7.3

A wood beamwith Young's modulus E,, and A mm wide by B mm deep by L mm long,
has an aluminum plate with Y oung’s modulus E; and a net section C mm wide by D mm
high securely fastened to its bottom face, as shown in Fig. 7.13. Six external vertical
forces, Py, P,, Ps, P4, Ps and Pg are applied at six different locations along the beam, L,
Lo, L3, Ly, Ls, and Le. The allowable tensile stressis S.

Py P, Ps Py Ps Pg A
M <>
Ol I h 4 v v rv v v I02 B
7Ly h P
D) > Ly P
) "Ly C AN
) ~ Lg
) Le\ M — M cross-section
) L

Figure 7.13 A Composite Beam.

In this problem, the twenty random variables are
X =[X, " Xp] =[AB,C,D, L, L, Ly, Ly, Ls, L, L, P, P, Py P, Py P E L E S|

Details of the random variables are given in Table 7.2.
00000o0ooooon
m N Pa

Table 7.2 Random Variables of theBeam Problem -t x-space MPPLI LI

Variable No. Variable Mean value Standard deviation | Distribution
1 A 100 mm 0.2mm Normal
2 B 200 mm 0.2 mm Normal
3 C 80 mm 0.2 mm Normal
4 D 20 mm 0.2 mm Normal
5 L, 200 mm 1 mm Normal
6 L, 400 mm 1 mm Normal



應該是按照標準單位計算
m N Pa
根據x-space MPP推測
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Variable No. Variable Mean value Standard deviation | Distribution
7 Ls 600 mm 1 mm Norma
8 L, 800 mm 1 mm Normal
9 Ls 1000 mm 1 mm Normal
10 Le 1200 mm 1 mm Norma
11 L 1400 mm 2mm Norma
12 P, 15 kN 1.5kN Norma
13 P, 15kN 1.5kN Normal
14 Ps 15 kN 1.5kN Norma
15 P, 15kN 1.5kN Norma
16 Ps 15kN 1.5kN Norma
17 Ps 15kN 15kN Normal
18 (= 70 GPa 7GPa Normal
19 Ew 8.75 GPa 0.875 GPa Normal
20 S 25.5MPa 3.825MPa Normal

The maximum stress occurs in the middle cross-section M-M and is given by

. t. Tt |
€o ue u
éa R(L- L) géO.SABZ+E4DC(B+ D)4
8- L~ L)- R~ LG o 0
e L G  AB+—=pC U
s= g - be E. a .tl
2 2
. 1' go.SABZ+E5DC(B+ D)4 1” e c ,'[ 20.5A82+% DC(B+D) 31“
~ AB’+ ABj & = (- 0.5By +-——2CD®+—2CD{0.5D +B- & a Oy
1 i¢ a+=pc 0 1 BE R ¢ aB+=2DC Ui

k b
The maximum stress s sﬁould be less than the allowable’ stress (strength) S The
probability of failure of the beam is defined by

P, =P{g(X)<0} =P{S-s <0}

The MPP found by FORM is shown in Table 7.3. The reliability index b =3.1317 and
the probability of failureis

p, =F (-b)=F (-3.1317) =8.6908" 10*

Table 7.3 The MPP in U-Space and X-space

Variable No. Variable MPP in U-space MPP in X-space
1 A -1.8148E-02 9.9996E-02
2 B -1.9192E-02 2.0000E-01
3 C -4.9159E-03 7.9999E-02
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Variable No. Variable MPP in U-space MPP in X-space
4 D -2.8892E-02 1.9994E-02
5 L, 5.5311E-03 2.0001E-01
6 L, -5.5885E-03 3.9999E-01
7 Ls 9.2576E-03 6.0001E-01
8 L4 -5.4737E-03 7.9999E-01
9 Ls -5.4163E-03 9.9999E-01
10 Ls 1.9859E-02 1.2000E+00
11 L -1.0603E-02 1.4000E+00

12 P, 3.2155E-01 1.5482E+04
13 P, 2.1435E-01 1.5322E+04
14 Ps3 3.2154E-01 1.5482E+04
15 Py 2.1437E-01 1.5322E+04
16 Ps 1.0719E-01 1.5161E+04
17 Pe -1.0715E-01 1.4839E+04
18 Ea -2.0064E-01 6.8596E+10
19 Ex 1.9291E-01 8.9188E+09
20 S -3.0669E+00 1.3769E+07

Second Order Reliability Method

Asits name implies, the Second Order Reliability Method (SORM) uses the second order

Taylor expansion to approximate the performance function at the MPP u . The
approximation is given by

g(U) » q(U) =g(u’) +N(u)(U - u’)’ +%(U -UDHU )(U-u)’ (7.37)

where H(u’) is the Hessian matrix at the MPP, namely,

¢€fg g . _Tgdu
SIS Uy, Y, g
g‘nzg 9 g 3
Hu)=aluu, U’ UV, 4 (7.38)
e .. G
? 2 2 2 l:I
é 179 "9 g ¢
gﬂu nU1 ﬂU nUZ ﬂUnz HJ
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After a set of linear transformation, such as coordinate rotation and orthogonal
diagonalization, the performance function is further simplified as

qU) =U, - g% +Lypul (7.39)
2 2

where D is a (n- 1) " (n- 1) diagonal matrix whose elements are determined by the
Hessian matrix H(u'),and U ={U, U,, ---, U_}.

When b is large enough, an asymptotic solution of the probability of failure can be then
derived as

by = Plg(X) <0 = F(- b)O (1+bk, (7.40)

i=1

in which k; denotes the i-th main curvature of the performance functiong(U) at the
MPP.

Since the approximation of the performance function in SORM is better than that in
FORM (see Fig. 7.14), SORM is generally more accurate than FORM. However, since
SORM requires the second order derivative, it is rot as efficient as FORM when the
derivatives are evaluated numerically. If we use the number of performance function
evauations to measure the efficiency, SORM needs more function evaluations than

FORM.
U, 4 SORM
\ /4/9:0
g<0
g0 . MpPu
b

5 >
//N
FORM

Figure 7.14 Comparison of FORM and SORM
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Example 7.4
Use SORM to solve problem 7.2.

The same MPP is used for SORM. The probability of falure is found to be
p, =0.04098. For the nonlinear performance function in this problem, no analytical

solution exists. To compare the accuracy of the results, Monte Carlo Simulation (MCS) is
used to solve the problem. As we will discuss later in this book, the higher the number of
simulations is used, the higher the result is. For this problem, one million simulations are
conducted. The result from MCS is considered as the accurate solution for the
comparison. The results of the probability of falure are displayed in Table 7.3. The
results indicate that SORM is more accurate than FORM.

Table 7.3 The Probability of Failurefrom Different M ethods

Method FORM SORM MCS
Ps 0.04054 0.04098 0.04092

AsinExample7.2,if P, and B, follow lognormal distributions with the same mean and

standard deviation, the probability of failure calculated from FORM is p, = 0.0538. The

comparison between FORM and SORM is given in Table 7.4. MCS with 10° simulations
is again used as the reference. The result shows that SORM is more accurate than FORM.

Table 7.4 The Probability of Failure When P, and B, Follow L ognormal

Distributions
M ethod FORM SORM MCS
P; 0.0531 0.0538 0.0541

Example 7.5
Use SORM to solve problem 7.3.

The result from SORM is given in Table 5. The results from FORM and MCS are also
listed in the table for the comparison of the accuracy. MCS uses 10° simulations and its
result considered as the reference. For this problem, the first order and second order
derivatives of the performance function g(X) are evaluated by difference finite method.

The number of evaluating g(X) is used to measure the efficiency.
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Table 7.5 Comparison of Accuracy and Efficiency

Method FORM SORM MCS
oF 8.6908” 10* 8.7813" 10* 8.870" 10*
Number of function evaluations 88 550 10°

The results show that SORM is more accurate than FORM. However, SORM is much
less efficient than FORM. SORM calls the performance function 550 times while FORM
calls the performance function only 88 times.

Inverse Reliability Analysis

Aswe will seein reliability-based design later in this book, the use of the percentile value
of a performance function corresponding to a given reliability is more efficient. The
evaluation of the percentile value of the performance function is an inverse problem of

the reliability analysis. The problem can be stated as: Find the p — percentile value g°
given the probability

P{g(X)<g"}=p (7.41)

The above equation indicates that the probability that the performance function is less
than the p-percentile value g”is equal to p. Next, we will discuss how to estimate p —
percentile value g° using FORM.

To make use of FORM we discussed, let a new function be
g(X)=9g(X)- g° (7.42)

and the MPP for P{g (X)<0} =P{g(X)<g"} be u". From FORM, if the probability p
isknown, the reliability index is given by

b =|F ()| (7.43)

Since the reliability index is a distance and is always nonnegative, the absolute value is
used in the above equation. As illustrated in Fig. 7.15, the MPP U’ is a tangent point of
the circle with radius b and the performance function g (X) =g(X)- g° =0 and isaso
apoint that has the minimum value of g(X) on the circle. Therefore, the MPP search for
an inverse reliability analysis problem becomes: Find the minimum value of g(X) on the

b -circle (or b -sphere for a 3-D problem or b -hyper sphere for a higher dimensiona
problem).
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u, U g(X)<g’
oo f 2 X

g(X)>g" g(X)=9g(X)- g°=0, g(X)=g"

i >

Ul
Figure 7.15 The Inver se MPP Search

The mathematical model for the MPP search is then stated as: Find the MPP u" where
the performance function g(U) is minimized while u” remains on the surface of the b -

circle, namely
i ming(u)
Pt (7.44)
fsubjectto |ju|=b
Since at the MPP, u” = - Hu” a =-ba ,inthekth iteration
u“t=-pa“ (7.45)
where

[Nt

One of the following stopping criteria or the both can be used to terminate the search
process.

1) If Hu'”l- u"Hﬁel, stop.
2) If HN(uk+1)- N(uk)HEez,stop.

Egs. 7.45 and 7.46 give a recursive algorithm for MPP search for an inverse reliability
problem. The MPP search algorithm for the inverse reliability problem has the same
features as the MPP search algorithm in the last section.
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After the MPP u’ isidentified, the p — percentile value g” is calculated at the MPP as
g°=g(u’) (7.47)

The flowchart of the MPP search for the reverse reliability problem is drawn in Fig. 7.16.

Input starting Point, b

| U, b
u=u,
A
Ng(u)
p A==
[Ng ()]
_ A
U= Unew U, =ab
A
N.

INg(U,,) - Ng(u)| £ &,

Figure 7.16 Flowchart of the MPP Search for an Inverse Reliability Analysis

Example 7.6

If the probability of failure of the cantilever beam in the Example 7.2is p, =0.001, what
is the corresponding percentile value of the performance function?

Solution:

From Eq. 7.43, thereliability index is
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b =|F*(0.001) =3.0902

The starting point of the MPP is set to u® =(0,0) .

lteration 1

At U°=(0,0), g(u°)=0.67076, Ng(u®) = (- 0.37268, - 0.046585),
[Ng@®)|= /(- 0.37268)" +(- 0.046585)° =0.3756, and

Ng(u’)
Rg(u”)|

a’=

= (- 0.9923, - 0.1240).

Applying EQ. 7.45 produces a new point,
u'=- ba’=-3.0902(- 0.9923, - 0.1240) = (3.0664, 0.3833)

Iteration 2

At u' = (3.0664, 0.3833), g(u') =-0.53073, Rig(u") = (- 0.39663, - 0.03191),
[Ng(uh| = J(-0.39663)° +(- 0.03191)° =0.3979, and

N 1
at=NOW) _ (09968, - 0.0802).
Ng(uh)|

Applying EqQ. 7.45 again produces a new point,
u®=-ba'=-3.0902(- 0.9968, - 0.0802) =(3.0806, 0.24781)

The convergenceis achieved after iteration 3. Table 7.6 shows the convergence history.

Table 7.6 MPP Search History

|teration g Ng U, J,)
0 0.67076 (-0.37268, -0.046585) (3.0664, 0.3833)
1 ~0.53073 (-0.39663, -0.03191) (3.0803, 0.24781)
2 -0.53196 (-0.39718, -0.031483) (3.0806, 0.24418)
3 ~0.5319 (-0.39719, -0.031472) (3.0806, 0.24409)
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The MPPisfound at u = (3.0806, 0.24409), and the percentile value of the performance

0.001 —

function is g =-0.53196 . The probability of the performance function less than
g°® =-0.53196 is equal to 0.001.

Sensitivity Analysis

Reliability analysis is used to evaluate a given design. If the reliability analysis result
showsthat the reliability is not satisfactory, i.e., lower than the required reliability, there
are several waysto improve the reliability. Some of them are

(1) To change the mean values of the random variables,
(2) To reduce the variances of the random variables, and
(3) To truncate the distributions of the random variables.

When the number of random variablesislarge, it is difficult to change the distributions of
all the random variables. It is also not economic to control al the random variables. To
effectively improve the design, aquestion of interest is. For which random variables we
should make changes to orqcseern 1o improve reliability? To answer this question, we need to
perform sensitivity analysis. With the information of sensitivity, we will be able to
identify the most significant random variables. Only the important variables need to be

managed. The sensitivity analysis can give us right directions for the improvement.

Reliability sensitivity analysis is used to find the rate of change in the probability of
failure (or reliability) due to the changes in the parameters (usually mean and standard
deviation) of distributions. For a distribution parameter p of random variable X, , the

sensitivity is defined by

fip,
s =——— 7.48
P fp ( )

S, can be derived as follows.

_Ip _TECD)_SFCD)TD _ ¢ T (7.49)

S
" Tp fip b Tp fp

The derivative of the reliability index with respect to the distribution parameter is given
by

Tt -

T Tu fp

where


從sensitivity的信息，我們可以識別最顯著的隨機變量
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(7.51)

8 [ «\2
1 u;
w Al S
Tu: Tu, d,.2 b
a ()
j=1
and from Eq. 7.4
Y =FgF (X)H=w(p) (7.52)
where w(p) = F " &F, (X )j isafunction of the distribution parameter p.
Therefore,
b _u w
— = 7.53
fp b p (7:59)
and
S :ﬂﬂ:-f(- b)u_i*M (7.54)
" Tp b 1p
Using Eq. 7.54, we can calculate the sensitivity of the mean and standard deviation of
random variables X; as follows.
S, :ﬂﬂ:-f (- b)iM (7.55)
' m b m
and
ﬂpf u w
=—=-f(-b)1+— 7.56
el (7.56)
respectively.
For anormal distributed random variable X, ~ N(m,s;)
1z a8 X -muU_ X -
w(m.s,)=F g, (= F & (=" (7.57)
e i u i
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W = 7.58
e (7.58)
And
fw_ X-m_.u 7,59
ﬂsl Si2 Si ( ' )
Therefore,
s, =P g (. b)— (7.60)
m
and
*\2
o, (u)
=00 —f L p) Ll 7.61
S, fs) ( )bsi (7.61)
Example 7.6

Calculate the sensitivity of random variables for Example 7.2.

Sp, = ﬂpf =f (- b) e =f (- 1.7444 )ﬂ:&G?SS' 10
sPX 1.7444° 100
= ﬂpf =f (- b) Y =f (- 1.7444)0'1—6:38:8.1786' 10°
m, bs », 1.7444" 100
2
2
s = ey =f (- b)( ) _f(-1.7444)ﬂ:1.5064'10'3
s o Sp, 1.7444" 100
T, (u) 0.1638?
s =——=f(-b)~ 2L =f (-1.7444) ——=__=1.3394" 10°
" Ts,p, bs 5, 1.7444° 1000

From the sensitivity results, we can draw the following conclusions.

1) Because the sign of each sensitivity is positive, if we increase each of the means and
standard deviations of the external forces P, and Py, the probability of failure will
increase. Therefore, we need to reduce the means or standard deviations of the two
random variables, or their combinations, to improve the reliability.

2) Since the sensitivity of the mean and the standard deviation of P, is greater than that of
Py, for the same change in the means or standard deviations, P, will have more significant
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impact on the reliability change than P,. In this sense, P, is more important than P,. If the
parameters of one random variable would be allowed to change due to cost concern, we
would make changeson P,.

Conclusion

We have discussed how to estimate the reliability, which is defined as the probability that
a performance function (performance) is safe. Two most commonly used reliability
anaysis methods FORM and SORM have been discussed.

It is noted that the reliability analysis methods are used for evaluating a specific
probability at the limit state, and they are not intended for generating a complete
distribution of a performance function or its statistica moments. However, if different
values that cover the range of distribution of the performance function are used as limit
states, FORM or SORM is applicable to generating the whole distribution of the
performance function. For example, the cdf of a performance function g(X) a a

particular value c is calculated by F (c) = P{g(X) <c}. If anew function is defined by

g(X) =9g(X)- c, the cdf estimation becomes F,(c) = P{g'(X)< 0} Then FORM or
SORM s applicable to estimate the cdf , which is the probability of failure for function
g(X) =9(X)- c.

Since both FORM and SORM approximate a performance function at the MPP, the
accuracy of the methods depends upon how accurate the approximated performance
function isin U-space. If the performance function in U-space is close to alinear function
when FORM is used, or close to a quadratic function when SORM s used, both methods
will produce accurate reliability estimations. If the performance function is highly
nonlinear in U-space, both methods may generate a larger error. Even though a
performance function is close to linear in X-space, it may become highly nonlinear in U-
space because the normal to nortnormal transformation from X-space to U-space is
nonlinear. Only under very special cases, for example, the random variables are normally
distributed, the transformation is linear. Generally, SORM is more accurate than SORM
even though there exist some counter examples where the former is less accurate than the
latter.
formO OO

As for efficiency, FORM is more efficient than SORM since the former uses only the
first order derivative and the latter uses both first and second order derivatives. It is noted
that a single reliability analysis needs to perform a number of deterministic analyses on
the performance function for the MPP search. For many engineering problems, a
performance function is expensive to evaluate, and no analytical derivative exists. When
the derivative has to be evaluated numerically, the computational effort will be
approximated proportional to the number of random variables. Therefore, both FORM
and SORM may not be applicable for large scale problems, and we have to resort to
Monte Carlo simulation or other approximation methods that will be discussed in what
follows.

large scalel] 0 0 FORM SORMO 00 O ---> [J [0 Monte Carlo] O
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