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Chapter 7 

First Order and Second Reliability Methods 
 
7.1 Introduction 
 

As discussed in Chapter 6, reliability is defined as the probability of a performance 
function ( )g X  greater than zero, i.e. { ( ) 0}P g >X . In other words, reliability is the 
probability that the random variables 1 2( , , , )nX X X=X L  are in the safe region that is 
defined by ( ) 0g >X . The probability of failure is defined as the probability { ( ) 0}P g <X . 
Or it is the probability that the random variables 1 2( , , , )nX X X=X L  are in the failure 
region that is defined by ( ) 0g <X . If the joint pdf of X is ( )fx x , the probability of failure 
is evaluated with the integral 
 

 
( ) 0

= { ( ) 0} ( )f
g

p P g f d
<

< = ∫ x
x

X x x  (7.1) 

 
The reliability is computed by 
 

 
( ) 0

1 = { ( ) 0} ( )f
g

R p P g f d
>

= − > = ∫ x
x

X x x  (7.2) 

 
In this chapter, two of the most commonly used reliability analysis methods, the First 
Order Reliability Method (FORM) and the Second Order Reliability Method (SORM) 
will be presented. The basic idea of the methods is to ease the computational difficulties 
through simplifying the integrand ( )fx x  and approximating the performance function 

( )g X . With the simplification and approximation, solutions to Eqs. 7.1 and 7.2 will be 
easily obtained.  
 
All the random variables X  herein are assumed mutually independent. The methods 
discussed can be extended to problems with correlated random variables after those 
variables are converted to independent variables. 
 
 

7.2 First Order Reliability Method 
 

The name of First Order Reliability Method (FORM) comes from the fact that the 
performance function ( )g X  is approximated by the first order Taylor expansion 
(linearization).   
 
The probability integrations in Eqs. 7.1 and 7.2 are visualized with a two-dimensional 
case in Fig. 7.1. The figure shows the joint pdf ( )fx x  and its contours, which are 
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projections of the surface of ( )fx x  on X1 - X2 plane. All the points on the contours have 
the same values of ( )fx x  or the same probability density. The integration boundary 

( ) 0g =X  is also plotted on X1 - X2 plane.  

 
Figure 7.1 Probability Integration 

 
The probability integration in Eqs. 7.1 or 7.2 is the volume underneath the surface 
(hyper-surface for the higher than 2-D problems) of the joint pdf ( )fx x  in the failure 
region ( ) 0g <X or the safe region ( ) 0g >X . Imagine that the surface of the integrand 

( )fx x forms a “hill”. If the hill were cut by a knife that has a blade shaped with the curve 
( ) 0g =X , the hill would be divided into two parts. If the part on the side of ( ) 0g <X  

were removed, the part left would be on the side of ( ) 0g >X  as shown in Fig. 7.1. The 
volume left is the probability integration in Eq. 7.2, which represents the reliability. In 
other words, the reliability is the volume underneath ( )fx x  on the side of safe region 

( ) 0g >X . Of course, the probability of failure will be the volume underneath ( )fx x  on 
the side of failure region ( ) 0g <X , the removed part.  
 
To show the integration region more clearly, the contours of integrand ( )fx x  and the 
integration boundary ( ) 0g =X  are plotted again in the random variable space (X-space) 

integrant
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in Fig. 7.2, which is X1 - X2 plane. The integration for the reliability is performed in the 
region where ( ) 0g >X  while the integration for the probability of failure is performed in 
the region where ( ) 0g <X . 
 

 
Figure 7.2 Probability Integration in X-Space 

 
 
The direct evaluation of the probability integration in Eqs 7.1 and 7.2 is extremely 
difficult. The reasons are multifold.  First, since a number of random variables X are 
involved, the probability integration is multidimensional. The dimensionality is typically 
high for engineering applications. Second, the integrand ( )fx x  is the joint pdf of X and is 
generally a nonlinear multidimensional function. Third, the integration boundary 

( ) 0g =X  is also multidimensional and usually a nonlinear function. In many engineering 
applications, ( )g X  is a black-box model (or simulation model), and the evaluation of 

( )g X  is computationally expensive. Examples of black-box models include finite 
element analysis, dynamic simulation, and computational fluid dynamics. Because of the 
complexities, there is seldom an analytical solution to the probability integration, except 
for very special cases. It is also unpractical using numerical integration to find the 
solution due to the high dimensionality in most engineering applications. To this end, 
approximation methods, such as the First Order Reliability Method (FORM) and Second 
Order Reliability Method (SORM) have been developed in the area of structural 
reliability.  
 



Probabilistic Engineering Design 

 4 

Two steps are involved in these approximation methods to make the probability 
integration easy to be computed. The first step is to simplify the integrand ( )fx x  so that 
its contours become more regular and symmetric, and the second step is to approximate 
the integration boundary ( ) 0g =X . After the two steps, an analytical solution to the 
probability integration will be easily found. 

 
The way to approximate the probability integration divides the methods into two types: 
the First Order Reliability Method (FORM) and the Second Order Reliability Method 
(SORM).  We will discuss FORM first. The procedure of the First Order Reliability 
Method (FORM) is described below.  
 
Step One – Simplify the integrand 
 
The simplification is achieved through transforming the random variables from their 
original random space into a standard normal space. The space that contains the original 
random variables ( )1 2, , , nX X X=X L  is called X-space. To make the shape of the 

integrand ( )fx x  regular, all the random variables ( )1 2, , , nX X X=X L  are transformed 
from X-space to a standard normal space, where the transformed random variables 

( )1 2, , , nU U U=U L  follow the standard normal distribution. The transformed space is 
termed as U-space. Recall that a standard normal variable has a mean of 0 and a standard 
deviation of 1.0. 
 
The transformation from X to U is based on the condition that the cdfs of the random 
variables remain the same before and after the transformation. This type of 
transformation is called Rosenblatt transformation [1], which is expressed by 
 

 ( ) ( )
iX i iF x u= Φ  (7.3) 

 
in which ( )Φ ⋅  is the cdf of the standard normal distribution.  
 
The transformed standard normal variable is then given by 

 
 1 ( )

ii X iU F X−  = Φ    (7.4) 

 
 
For example, for a normally distributed random variable ~ ( , )X N µ σ , Eq. 7.4 yields 
 

 [ ]1 1( )X

X X
U F X

µ µ
σ σ

− − − −  = Φ = Φ Φ =    
 (7.5) 

 
Or 
 

 X Uµ σ= +  (7.6) 
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It should be noted that in the above example the transformation from a normal variable to 
a standard normal variable is linear. The general transformation from a non-normal 
variable to a standard normal variable, however, is nonlinear, 
 
After the transformation, the performance function becomes 
 

 ( )Y g= U  (7.7) 
 

It is worthwhile to mention that after the transformation, the mathematical formulation of 
the performance function ( )g X  will change. Without confusion, we will still use ( )g U to 
denote the transformed performance function in U-space in order to avoid introducing an 
additional symbol for the performance function.  
 
After the transformation, the probability integration becomes 
 

 
( ) 0

=P{ ( ) 0} ( )f
g

p g dφ
<

< = ∫ U
U

U u u  (7.8) 

 
where ( )φu u  is the joint pdf of U. Since all the random variables are independent, the 
joint pdf is the product of the individual pdfs of standard normal distribution and is then 
given by 

  

 2

1

1 1
( ) exp

22

n

i
i

uφ
π=

= −  
∏U u  (7.9) 

 
Therefore, the probability integration becomes 
 

 
( )1 2

2
1 2

1, , , 0

1 1
= exp

22
n

n

f i n
ig u u u

p u du du du
π=<

 − 
 

∏∫ ∫
L

L L  (7.10) 

 
It should be noted that after the transformation, the integration in Eq. 7.10 in U-space is 
identical to that in Eq. 7.1 in X-space without any loss of accuracy, but the contours of 
the integrand φU  become concentric circles (or hyperspheres for a higher dimensional 
problem). The circular contours are shown in Figs. 7.3 and 7.4. It is obvious that the 
integrand φU  is easier to be integrated.  
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Figure 7.3  Probability Integration after the Transformation 

 
Figure 7.4 Probability Integration in U - Space 
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Step Two – Approximate the integration boundary  
 
In order to further make the probability integration easier to be evaluated, in addition to 
simplifying the shape of the integrand, the integration boundary ( ) 0g =U  will also be 
approximated. FORM uses a liner approximation (the first order Taylor expansion) as 
shown below. 
 

 * * *( ) ( ) ( ) ( )( )Tg L g g≈ = + ∇ −U U u u U u  (7.11) 
 

where ( )L U  is the linearized performance function, ( )* * * *
1 2, , , nu u u=u L  is the expansion 

point, T stands for a transpose, and *( )g∇ u  is the gradient of ( )g U  at *u .  *( )g∇ u  is 
given by 
 

 
*

*

1 2

( ) ( ) ( )
( ) , , ,

n

g g g
g

U U U
 ∂ ∂ ∂

∇ =  ∂ ∂ ∂  u

U U U
u L  (7.12) 

 
To minimize the accuracy loss, it is natural to expand the performance function ( )g U  at 
a point that has the highest contribution to the probability integration. In other word, it is 
preferable to expand the function at the point that has the highest value of the integrand, 
namely, the highest probability density. With the integration going away from the 
expansion point, the integrand function values will quickly diminish. The point that has 
the highest probability density on the performance ( ) 0g =U is termed as the Most 
Probable Point (MPP). Therefore, the performance function will be approximated at the 
MPP. Maximizing the joint pdf ( )φu u  at the limit state of ( ) 0g =U  gives the location of 
the MPP. The mathematical model for locating the MPP is then given by 
 

 
2

1

1 1max exp
22

subject to ( ) 0         

n

i
i

u

g
π=

  −   
 =

∏u

u
 (7.13) 

   
 

Since 
 

  2 2

1 1

1 1 1 1exp exp
2 22 2

n n

i i
i i

u u
π π= =

  − = −      
∏ ∑  (7.14) 

 

maximizing 2

1

1 1
exp

22

n

i
i

u
π=

 −  
∏ is equivalent to minimizing 2

1

n

i
i

u
=
∑ , the model for the 

MPP search can be rewritten as 
 

of failure

maximizing joint pdf f_u(u)
at limit state of g(U)=0
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min                  

       
subject to ( ) 0   g




=
u

u

u
 (7.15) 

  
where  ⋅  stands for the norm (length or magnitude) of a vector, namely,  
 

 2 2 2 2
1 2

1

n

n i
i

u u u u
=

= + + = ∑u L  (7.16) 

 
The solution to the model given in Eq. 7.15 is the MPP and is denoted by 

( )* * * *
1 2, , nu u u=u L . As shown graphically in Figs. 7.5 and 7.6, the MPP is the shortest 

distance point from the limit state ( ) 0g =U  to the origin O in U-space. The minimum 

distance *β = u  is called reliability index.  
 

 

 
Figure 7.5 Probability Integration in FORM 
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Figure 7.6 Highest Probability Density at the MPP 

 
Since at the MPP *u , ( ) 0g =U , Eq. 7.11 becomes 
 

 
*

*
0

1 1

( )
( ) ( )

n n

i i i i
i ii

g
L a aU

U= =

∂
= − = +

∂∑ ∑
u

U
U U u  (7.17) 

 
where  

 
*

*
0

1

( )n

i
i i

g
a

U=

∂
= −

∂∑
u

U
u  (7.18) 

 
and 

 
*

( )
i

i

g
a

U
∂

=
∂

u

U
 (7.19) 

 
Eq. 7.17 indicates that ( )L U  is a linear function of standard normal variables. Therefore, 

( )L U  is also normally distributed. Its mean is given by 
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*

*
0

1

( )n

L i
i i

g
a

U
µ

=

∂
= = −

∂∑
u

U
u  (7.20) 

 
and its standard deviation is given by 
 

 
*

2

2

1 1
i

n n

L i
i i i u

ga
U

σ
= =

 ∂ = =
 ∂ 

∑ ∑  (7.21) 

 
Therefore, using Eq. 4.6, the probability of failure is calculated by 
 

 
*

*

*

1 *

2
1

1

{ ( ) 0} ( )

n

i ni iL
f i i

iL n

i i

g u
U

p P L u
g
U

µ
α

σ
=

=

=

 
 ∂
 ∂−   ≈ < = Φ = Φ = Φ      ∂    ∂   

∑
∑

∑

u

u

U  (7.22) 

 
 where  
  

 
*

*

2

1

i
i

n

i i

g
U

g
U

α

=

∂
∂

=
 ∂ 
 ∂ 

∑

u

u

 (7.23) 

 
Let the vector of iα  be  
 

 ( )
*

1 2 *

( ), , ,
( )n

g
g

α α α ∇= =
∇

ua
u

L  (7.24) 

 
The probability of failure can also be written as 
 

 ( )* *

1

n
T

f i i
i

p uα
=

 ≈ Φ = Φ  
∑ au  (7.25) 

 
in which *Tau  is the inner (dot) product of the unit vector a  and the vector of the MPP 

*u . 
 

i-偏導

gradient的norm

Highlight

Highlight

Highlight

Highlight

Highlight
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As shown in Fig. 7.7, since the MPP *u  is the shortest distance point from the origin to 
the performance function curve ( ) 0g =U , the MPP is the tangent point of the curve 

( ) 0g =U  and the circle with the radius of β . Therefore, the MPP vector *u is 
perpendicular to the curve ( ) 0g =U . The direction of the MPP can be represented by the 

unit vector * * */ / β=u u u . On the other hand, the direction of the gradient is also 
perpendicular to the curve at the MPP, and its direction can be represented by the unit 
vector a  (see Eq. 7.24). Therefore 
 

 
*

β
=

u
a  (7.26) 

 
 or, 
 
 * β= −u a  (7.27) 
 

 
Figure 7.7 The MPP is A Tangent Point 

 
 Therefore, the probability of failure is evaluated by 

 
 ( ) ( ) ( )*{ ( ) 0} T T

fp P L β β≈ < = Φ = Φ − = Φ −U au aa  (7.28) 
 

Note that in the above derivation, 2

1

1
n

T
i

i

α
=

= =∑aa  is used. 

 The reliability is then given by 
 
 ( ) ( )1 1fR p β β= − = − Φ − = Φ  (7.29) 

*  a tangent point−u

β

−a

*
1u

*
2u

1U

2U

( ) 0g =U  

a~normal vector
b~radius

L = norm(u) + lambda * g
grad L = u + lambda * grad g
u = - lambda * grad g
--->
u* = -b * a

這個關係包含約束條件與目標函數
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 The procedure of the FORM is briefly summarized below. 
 

1) Transform the original random variables from X-space to U-space by Rosenblatt 
transformation. 

2) Search the MPP in U-space and calculate the reliability index β . 
3) Calculate reliability ( )R β= Φ . 

 
 
7.3 MPP Search 

 
From the above discussion, it is noted that the key to calculating the probability of failure 
or reliability is to locate the MPP in U-space. Since it is very difficult or even impossible 
to solve the MPP search model in Eq. 7.15 analytically, many numerical methods have 
been developed for the MPP search. Next, we will introduce a commonly used MPP 
search algorithm.  
 
The MPP search algorithm uses a recursive formula and is based on the linearization of 
the performance function. The procedure is demonstrated in Fig. 7.8.  

 
Figure 7.8 MPP Search 

 
Let the MPP in kth iteration be ku . The performance function is linearized at ku  as 
shown by the lower line in Fig. 7.8. The linearized function is given by 
 

 ( ) ( ) ( )( )k k k Tg g g= + ∇ −u u u u u  (7.30) 
 
Let the linearized function be zero, then the MPP 1k+u  in the next iteration will be on the 
line, namely,  
 

ku

kβ

ka

1U

2U

 

1k +u

1kβ + 1( ) ( )( ) 0k k k k Tg g ++ ∇ − =u u u u

( )kg u

1( )kg +u

( ) ( )( )k k k Tg g+ ∇ −u u u u

O
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 1 1( ) ( ) ( )( ) 0k k k k k Tg g g+ += + ∇ − =u u u u u  (7.31) 
 

The line is shown as the upper line in Fig. 7.8.  
 

 From Eq. 7.27, 
 k k kβ= −u a  (7.32) 
 

As shown in Fig. 7.8, since 1k+u  is the shortest distance point from the origin to the line, 
vector 1k+u  is perpendicular to the line and is directed from the origin O to 1k+u . ka , 
which is the unit vector of the gradient, is also perpendicular to the line and in the 
opposite direction to 1k+u . Because the magnitude of 1k+u  is the distance from the origin 
to 1k+u  (reliability index), then 
  

 1 1k k kβ+ += −u a  (7.33) 
 
 Substituting ku  in Eq. 7.32 and 1k +u in Eq. 7.33 into Eq. 7.31 yields 
 
 1 1( ) ( )( ) ( ) ( ) ( ) ( ) 0k k k T k k k k k kg g g gβ β β β+ ++ ∇ − = + ∇ − =u u a u u  (7.34) 
 
 Rearranging Eq. 7.34 gives 
 

 1 ( )
( )

k
k k

k

g
g

β β+ = +
∇

u
u

 (7.35) 

 
 Therefore, the updated point is given by 
 

 1 ( )
( )

k
k k k

k

g
g

β+
  = − + 

∇  

u
u a

u
 (7.36) 

  
To use the recursive formula in Eqs. 7.35 and 7.36, a starting point 0u is required. 

Usually, the origin 0 =u 0  is set as the starting point. Three convergence criteria may be 
used to terminate the MPP search process. 
 

1) If 1
1

k k ε+ − ≤u u , stop; 

2) If 1
2( ) ( )k kg g ε+∇ − ∇ ≤u u , stop; or 

3) If 1
3

k kβ β ε+ − ≤ , stop. 
 

1ε , 2ε , and 3ε are very small quantities. 
 

a~normal vector

unit vector of gradient

點乘--得到一個標量

g--標量
除以梯度絕對值


直覺解釋
1.g = 0 b_{k+1}不再變化-->與b_k一致

2.delta y = k delta x
--->
delta x = delta y / k
(y~g x~u k~gradient g)

3. dimension match

for exp g [N]  and gradient g [N/m]
---> after g / (gradient g) --> [m] which matches b[m]

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

拉格朗日函數 一階導數=0
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The flowchart of the MPP search is shown in Fig. 7.9. 
 
 
 

 
 
 

Figure 7.9 The Flowchart of the MPP Search 
 
The above MPP search algorithm is easy to use and program, and the algorithm 
converges quickly. Because of the good features, it is widely used in the field of 
structural reliability and probabilistic engineering design. However, it may fail to 
converge for some problems, for example, oscillating among two or more points without 
convergence, or diverging away from the solution. If divergence occurs, one may 

    

  

0 ,  =β=u u u  

( )
( )

g
g

∇
=

∇
u

a
u

 

( )
( )new

g
g

β β= +
∇

u
u

 

new β= −u a  

1new ε− ≤u u  

2( ) ( )newg g ε∇ − ∇ ≤u u  

3newβ β ε− ≤  

0u

Stop 

,new newβ β= =u u  

Input starting Point 
 

N. 

Y. 

廣泛用於 Structural reliability & probabilistic Engineering design
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consider using other MPP search methods or using optimization techniques. We will 
discuss optimization later in this book.  
     

 Example 7.1 
 

The strength and maximum stress of a mechanical component, 1X  and 2X , are normally 

distributed.  1 ~ (200,20)MPaX N  and 2 ~ (150,10)MPaX N . Use FORM to compute the 
probability of failure of the component.  

 
 The performance function is given by 
 

 1 2( )g X X= −X  
 

For the normally distributed random variables 1X  and 2X , using the transformation 
given in Eq. 7.6, the performance function becomes 
 

 1 1 1 2 2 2 1 2( ) ( ) 20 10 50g U U U Uµ σ µ σ= + − + = − +U  
 

The performance function ( )g U  is plotted in Fig. 7.10. For this linear performance 
function, it is shown that the shortest distance point *u  is the intersection of the 
perpendicular line drawn from the origin O to the line of the limit state ( ) 0g =U . The 
MPP *u  can be found graphically using the above geometric condition. It can also be 
solved by the above MPP search algorithm. If the MPP search algorithm is used, only one 
iteration is needed because of the linear performance function.  

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

1.5

 g(U)=10U
1
-20U

2
-50=0

U1

U2

β

u*(-2, 1)

O

-α0

 
Figure 7.10 The Linear Performance in U-Space 
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The search process starts from the initial point 0 (0,0)=u . At this starting point, 

0

1 2

( ) , (20, 10)
g g

g
U U

 ∂ ∂
∇ = = − ∂ ∂ 

u , 0( ) 50g =u , ( ) ( )2 20( ) 20 20 22.3607g∇ = + − =u , 

0
0

0

( ) (0.8944, 0.4472)
( )

g
g

∇= = −
∇

ua
u

,  and 0 0 0β = =u . 

 
Using Eq. 7.36, the MPP is found at 
 

 
0

* 0 0
0

( ) 50
(0.8944, 0.4472) ( 2.0, 1.0)

22.3607( )
g
g

β
  = − + = − − = − 

∇  

u
u a

u
 

 
The reliability index is 
 

* 2.2361β = =u  
 

The probability of failure is calculated by 
 

( ) ( )2.2361 0.0127fp β= Φ − = Φ − =  
 

An analytical solution to this simple problem exists. Since ( )g X  is a linear combination 
of normally distributed random variables 1X  and 2X , ( )g X  also follows a normal 
distribution. Its mean and standard deviation are  

 
 1 2 50gµ µ µ= − =  
 

and 
 

 2 2
1 2 15.6205gσ µ µ= + =  

 
respectively. 
 

 The accurate solution is  
 

  { } ( )
0 0 50

( ) 0 = 2.2361 0.0127
15.6205

g
f

g

p P g
µ

σ

 − − = < = Φ Φ = Φ − =       
X  

 
It is noted FORM produces an accurate solution to the probability of failure for this 
specific problem where the performance function is linear in term of normally distributed 
variables in U-space. 

sqrt(20**2 + 10**2) = 22.36

22.36
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 Example 7.2 
 

A cantilever beam is illustrated in Fig. 7.11. One of the failure modes is that the tip 
displacement exceeds the allowable value, D0. The performance function is the difference 
between D0 and the tip displacement, and the function is given by 
 

   
2 23

0 2 2

4 y x
PL Pg D

Ewt t w
 = − +     

  

 
where ''

0 3D = , 630 10 psiE = ×  is the modulus of elasticity, ''100L =  is the length, w and t 

are width and height of the cross section, respectively, and ''2w = and ''4t = . xP  and yP  

are external forces with normal distributions ~ (500,100)xP N lb  and 
~ (1000,100)yP N lb . 

 

Px 

Py 
 

w 

t 

L 

 

Figure 7.11 A Cantilever Beam 

 
The probability of failure is defined as the probability of the allowable value less than the 
tip displacement, i.e.   
 

 
2 23

0 2 2

4 0y x
f

PL Pp P g D
Ewt t w

    = = − + ≤        
  

 
First, the normally distributed variables xP and yP  are transformed into the standard 
normal variables  
 

 ( , ) , yx

x x

y Px P
x y

P P

PP
U U

µµ

σ σ

− −
= =   

 
U  

 
Or 
 

 ( )( , ) ,
x x y yx y P x P P y PP P U Uµ σ µ σ= = + +X  

 
The transformed performance function in U-space becomes 
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2 23

0 2 2

4 y y x xP y P P x PU UL
g D

Ewt t w

µ σ µ σ+ +   
= − +   

  
  

 
The gradient of  ( )g U  is given by 
 

   
3

2 22 2
4 4

2 2 2 2

( )4 ( )
( ) ,  y y y yx x x x

y y y y y yx x x x x x

UL U
g

Ewt U UU U
w t

t w t w

µ σ σµ σ σ

µ σ µ σµ σ µ σ



 ++

∇ = 
+ +    + +  + +            

U   

 
The starting point of the MPP is set to 0 (0,0)=u .  
 
Iteration 1 
 
At 0 (0,0)=u , 0( ) 0.67076g =u , 0( ) ( 0.37268, 0.046585)g∇ = − −u ,   

( ) ( )2 20( ) 0.37268 0.046585 0.3756g∇ = − + − =u , 
0

0
0

( )
( 0.9923, 0.1240)

( )
g
g

∇
= = − −

∇
u

a
u

,  and 0 0 0β = =u . 

 
Using Eq. 7.36 produces a new point 
 

 
0

1 0 0
0

( ) 0.67076
( 0.9923, 0.1240) (1.7722, 0.22152)

0.3756( )
g
g

β
  = − + = − − − = 

∇  

u
u a

u
 

  
 

Iteration 2 
 
At 1 (1.7722, 0.22152)=u , 1( ) 0.015931g = −u , 1( ) ( 0.38984,  0.036775)g∇ = − −u , 

( ) ( )2 21( ) 0.38984 0.036775 0.3916g∇ = − + − =u ,  
1

1
1

( ) ( 0.9956, 0.0939)
( )

g
g

∇= = − −
∇

ua
u

, and 1 1 1.7859β = =u . 

 
Using Eq. 7.36 again produces a new point,  
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1
2 1 1

1

( ) 0.015931( 0.9956, 0.0939) 1.7859+
0.3916( )

(1.7375, 0.16391)

g
g

β
  −   = − + = − − −   ∇    

=

uu a
u  

 
The process continues until the solution converges. The search determines after 4 
iterations because the solutions in iteration 4 are very close to those in iteration 3. The 
complete convergence history is shown in Table 7.1 and Fig. 7.12.   
 

Table 7.1 MPP Search History 
Iteration β  g  g∇  ( , )x yU U  

0 0 0.67076 (-0.37268,  -0.046585) (1.7722, 0.22152) 
1 1.7859 -0.015931 (-0.38984,  -0.036775) (1.7375, 0.16391) 
2 1.7453 -0.00032102 (-0.38986, -0.036758) (1.7367, 0.16375) 
3 1.7444 -2.6004e-009 (-0.38986, -0.036761) (1.7367, 0.16376) 

 
 

Figure 7.12 The MPP Search History in U-Space 
 

The MPP is found at * (1.7367, 0.16376)=u , and the reliability index is 1.7444β = . The 
probability of failure is 
 

  ( 1.7444)=0.04054fp = Φ −   
 
 And the reliability is  
 
  1 1 0.040541=0.9595fR p= − = −  
 

(a) The MPP search history in U-space (b) Enlarged portion, the dotted box in (a)  
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In the above case, all the random variables are normally distributed. FORM can also 
handle non-normal variables. For example, if both xP  and yP  follows lognormal 
distributions with the same means and standard deviations, the probability of the failure 
calculated from FORM is 0.0531fp = . 
 
 
Example 7.3 
 
A wood beam with Young’s modulus Ew and A mm wide by B mm deep by L mm long, 
has an aluminum plate with Young’s modulus Ea and a net section C mm wide by D mm 
high securely fastened to its bottom face, as shown in Fig. 7.13. Six external vertical 
forces, P1, P2, P3, P4, P5 and P6 are applied at six different locations along the beam, L1, 
L2, L3, L4, L5, and L6. The allowable tensile stress is S.  
 
 P1 P2 P3 P4 P5 

O1 B 

D 

L 

M – M cross-section 

P6 

L1 
L2 

L3 
L4 

L5 
L6 

M 

O2 

A  

C 

M 

 
 

Figure 7.13 A Composite Beam.  
 
In this problem, the twenty random variables are 

[ ] [ ]T T
1 20X , ,XX = =L 1 2 3 4 5 6 1 2 3 4 5 6 a wA, B, C, D, L , L , L , L , L , L , L, P , P , P , P , P , P , E , E ,S . 

 
Details of the random variables are given in Table 7.2. 
 
 

Table 7.2 Random Variables of the Beam Problem 
 

Variable No. Variable Mean value Standard deviation Distribution 
1 A 100 mm 0.2mm Normal 
2 B 200 mm 0.2 mm Normal 
3 C 80 mm 0.2 mm Normal 
4 D 20 mm 0.2 mm Normal 
5 L1 200 mm 1 mm Normal 
6 L2 400 mm 1 mm Normal 

應該是按照標準單位計算
m N Pa
根據x-space MPP推測
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Variable No. Variable Mean value Standard deviation Distribution 
7 L3 600 mm 1 mm Normal 
8 L4 800 mm 1 mm Normal 
9 L5 1000 mm 1 mm Normal 
10 L6 1200 mm 1 mm Normal 
11 L 1400 mm 2 mm Normal 
12 P1 15 kN 1.5 kN Normal 
13 P2 15 kN 1.5 kN Normal 
14 P3 15 kN 1.5kN Normal 
15 P4 15 kN 1.5kN Normal 
16 P5 15 kN 1.5kN Normal 
17 P6 15 kN 1.5 kN Normal 
18 Ea 70 GPa 7GPa Normal 
19 Ew 8.75 GPa 0.875 GPa Normal 
20 S 25.5MPa     3.825MPa   Normal 

 

The maximum stress occurs in the middle cross-section M-M and is given by 

6
2

1
3 1 2 1 2 3 2

2

2 2

3 3

0.5 ( )( )
( ) ( )

0.5 ( ) 0.5 ( )
1 1

0.5 0.5
12 12

a
i i

i w

a

w

a a

a aw w

a w w

w

EAB DC B DP L L
E

L P L L P L L EL AB DC
E

E E
AB DC B D AB DC B D

E EE E
AB AB B CD CD D BE E EAB DC

E

=

   + +−   
− − − −   

   +
     σ =

  + + + +   + − + + + −  
  +
    

∑

2

a

w

E
AB DC

E

  
   

  
  +
    

 

The maximum stress σ should be less than the allowable stress (strength) S. The 
probability of failure of the beam is defined by 
 

 { } { }( ) 0 0fP P g P S σ= < = − <X                     

The MPP found by FORM is shown in Table 7.3. The reliability index 3.1317β =  and 
the probability of failure is  
 

( ) ( ) -43.1317 8.6908 10fp β= Φ − = Φ − = ×  
 

 Table 7.3 The MPP in U-Space and X-space 
 

Variable No. Variable MPP in U-space MPP in X-space 
1 A -1.8148E-02 9.9996E-02 
2 B -1.9192E-02 2.0000E-01 
3 C -4.9159E-03 7.9999E-02 
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Variable No. Variable MPP in U-space MPP in X-space 
4 D -2.8892E-02 1.9994E-02 
5 L1 5.5311E-03 2.0001E-01 
6 L2 -5.5885E-03 3.9999E-01 
7 L3 9.2576E-03 6.0001E-01 
8 L4 -5.4737E-03 7.9999E-01 
9 L5 -5.4163E-03 9.9999E-01 
10 L6 1.9859E-02 1.2000E+00 
11 L -1.0603E-02 1.4000E+00 
12 P1 3.2155E-01 1.5482E+04 
13 P2 2.1435E-01 1.5322E+04 
14 P3 3.2154E-01 1.5482E+04 
15 P4 2.1437E-01 1.5322E+04 
16 P5 1.0719E-01 1.5161E+04 
17 P6 -1.0715E-01 1.4839E+04 
18 Ea -2.0064E-01 6.8596E+10 
19 Ew 1.9291E-01 8.9188E+09 
20 S -3.0669E+00 1.3769E+07 

                                 

 
7.4 Second Order Reliability Method 
 

As its name implies, the Second Order Reliability Method (SORM) uses the second order 
Taylor expansion to approximate the performance function at the MPP *u . The 
approximation is given by 

 

 * * * * * *1
( ) ( ) ( ) ( )( ) ( ) ( )( )

2
T Tg q g≈ = + ∇ − + − −U U u u U u U u H u U u  (7.37) 

 
where *( )H u is the Hessian matrix at the MPP, namely, 
 

 

*

2 2 2

2
1 1 2 1

2 2 2

* 2
2 1 2 2

2 2 2

2
1 2

( )

n

n

n n n

g g g
U U U U U

g g g
U U U U U

g g g
U U U U U

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 = ∂ ∂ ∂ 
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ u

H u

L

L

L L L L
 (7.38) 
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After a set of linear transformation, such as coordinate rotation and orthogonal 
diagonalization, the performance function is further simplified as 
 

 'T '1
( )

2nq β = − +  
U U U DU  (7.39) 

 
where D is a ( ) ( )1 1n n− × −  diagonal matrix whose elements are determined by the 

Hessian matrix *( )H u , and { }'
1 2 1,  ,  ,  nU U U −=U L .  

 
When β is large enough, an asymptotic solution of the probability of failure can be then 
derived as 
 

 ( )
1

1 /2

1

{ ( ) 0} ( ) 1
n

f i
i

p P g β β κ
−

=

= < = Φ − +∏X  (7.40) 

 
in which iκ denotes the i-th  main curvature of the performance function ( )g U at the 
MPP. 
 
Since the approximation of the performance function in SORM is better than that in 
FORM (see Fig. 7.14), SORM is generally more accurate than FORM. However, since 
SORM requires the second order derivative, it is not as efficient as FORM when the 
derivatives are evaluated numerically. If we use the number of performance function 
evaluations to measure the efficiency, SORM needs more function evaluations than 
FORM. 

 

 
 

Figure 7.14 Comparison of FORM and SORM 
 
 
  
 

U2 
g = 0 

U1 o 

MPP u* 
β 

SORM 

FORM 

g>0 
g<0 

渐近线
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Example 7.4 
 
 Use SORM to solve problem 7.2. 
 

The same MPP is used for SORM. The probability of failure is found to be 
0.04098fp = . For the nonlinear performance function in this problem, no analytical 

solution exists. To compare the accuracy of the results, Monte Carlo Simulation (MCS) is 
used to solve the problem. As we will discuss later in this book, the higher the number of 
simulations is used, the higher the result is. For this problem, one million simulations are 
conducted. The result from MCS is considered as the accurate solution for the 
comparison. The results of the probability of failure are displayed in Table 7.3. The 
results indicate that SORM is more accurate than FORM. 
 

Table 7.3 The Probability of Failure from Different Methods 
 

Method FORM SORM MCS 

fp  0.04054  0.04098  0.04092 
 
 

As in Example 7.2, if  xP  and yP  follow lognormal distributions with the same mean and 

standard deviation, the probability of failure calculated from FORM is 0.0538fp = . The 
comparison between FORM and SORM is given in Table 7.4. MCS with 106 simulations 
is again used as the reference. The result shows that SORM is more accurate than FORM. 
 

Table 7.4 The Probability of Failure When xP  and yP  Follow Lognormal 
Distributions 

 
Method FORM SORM MCS 

fp  0.0531 0.0538 0.0541 
 
 

 Example 7.5 
 
 Use SORM to solve problem 7.3. 
 

The result from SORM is given in Table 5. The results from FORM and MCS are also 
listed in the table for the comparison of the accuracy. MCS uses 106 simulations and its 
result considered as the reference. For this problem, the first order and second order 
derivatives of the performance function ( )g X  are evaluated by difference finite method. 
The number of evaluating ( )g X  is used to measure the efficiency.  
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Table 7.5 Comparison of Accuracy and Efficiency 
 

Method FORM SORM MCS 

fp  -48.6908 10×  -48.7813 10×  -48.870 10×  
Number of function evaluations 88 550 106 

 
The results show that SORM is more accurate than FORM. However, SORM is much 
less efficient than FORM. SORM calls the performance function 550 times while FORM  
calls the performance function only 88 times. 
 
 

7.5 Inverse Reliability Analysis 
 
As we will see in reliability-based design later in this book, the use of the percentile value 
of a performance function corresponding to a given reliability is more efficient. The 
evaluation of the percentile value of the performance function is an inverse problem of 
the reliability analysis. The problem can be stated as: Find the p  – percentile value pg  
given the probability 
 

  { ( ) }pP g g p< =X  (7.41) 
 
The above equation indicates that the probability that the performance function is less 
than the p-percentile value pg is equal to p. Next, we will discuss how to estimate p  – 
percentile value pg  using FORM.  
 
To make use of FORM we discussed, let a new function be 
 

   '( ) ( ) pg g g= −X X  (7.42) 
 
and the MPP for '{ ( ) 0} { ( ) }pP g P g g< = <X X  be *u . From FORM, if the probability p 
is known, the reliability index is given by 
 

  1( )pβ −= Φ  (7.43) 
 

Since the reliability index is a distance and is always nonnegative, the absolute value is 
used in the above equation. As illustrated in Fig. 7.15, the MPP *u  is a tangent point of 
the circle with radius β  and the performance function '( ) ( ) 0pg g g= − =X X  and is also 
a point that has the minimum value of ( )g X  on the circle. Therefore, the MPP search for 
an inverse reliability analysis problem becomes: Find the minimum value of ( )g X  on the 
β -circle (or β -sphere for a 3-D problem or β -hyper sphere for a higher dimensional 
problem).  
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Figure 7.15 The Inverse MPP Search 

 
The mathematical model for the MPP search is then stated as: Find the MPP  *u  where 
the performance function ( )g U  is minimized while *u  remains on the surface of the β -
circle, namely 
 

  
min ( )                 

       
subject to   

g

β




=

u
u

u
 (7.44) 

 
Since at the MPP, * * * *β= − = −u u a a , in the kth iteration 
 

  1k kβ+ = −u a  (7.45) 
 

where  

  
[ ( )]
[ ( )]

k
k

k

g
g

∇
=

∇
u

a
u

 (7.46) 

 
One of the following stopping criteria or the both can be used to terminate the search 
process. 

 
1) If 1

1
k k ε+ − ≤u u , stop. 

2) If 1
2( ) ( )k k ε+∇ − ∇ ≤u u , stop. 

  
Eqs. 7.45 and 7.46 give a recursive algorithm for MPP search for an inverse reliability 
problem. The MPP search algorithm for the inverse reliability problem has the same 
features as the MPP search algorithm in the last section.  

*u

pβ
'( ) ( ) 0, ( )p pg g g g g= − = =X X X

1U

2U
( ) pg g<X

( ) pg g>X

*a

o
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After the MPP *u  is identified, the p  – percentile value pg  is calculated at the MPP as 
 

   *( )pg g= u  (7.47) 
 
 The flowchart of the MPP search for the reverse reliability problem is drawn in Fig. 7.16. 
 
 

 
 

Figure 7.16 Flowchart of the MPP Search for an Inverse Reliability Analysis  
 
 

 Example 7.6  
 

If the probability of failure of the cantilever beam in the Example 7.2 is 0.001fp = , what 
is the corresponding percentile value of the performance function? 

  
 Solution: 
  
 From Eq. 7.43, the reliability index is 

  
  

  

0=u u  

( )
( )

g
g

∇
=

∇
u

a
u

 

new β=u a  

1new ε− ≤u u  

2( ) ( )newg g ε∇ − ∇ ≤u u  

0, βu

Stop 

new=u u  

Input starting Point, β  

Y. 

N. 
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  1(0.001) 3.0902β −= Φ =   
 

The starting point of the MPP is set to 0 (0,0)=u .  
 
Iteration 1 
 
At 0 (0,0)=u , 0( ) 0.67076g =u , 0( ) ( 0.37268, 0.046585)g∇ = − −u , 

( ) ( )2 20( ) 0.37268 0.046585 0.3756g∇ = − + − =u , and 
0

0
0

( )
( 0.9923, 0.1240)

( )
g
g

∇
= = − −

∇
u

a
u

. 

 
Applying Eq. 7.45 produces a new point,  
 

 1 0 3.0902( 0.9923, 0.1240) (3.0664, 0.3833)β= − = − − − =u a  
  
 Iteration 2 
 

At 1 (3.0664, 0.3833)=u , 1( ) 0.53073g = −u , 1( ) ( 0.39663, 0.03191)g∇ = − −u , 

( ) ( )2 21( ) 0.39663 0.03191 0.3979g∇ = − + − =u , and 
1

1
1

( ) ( 0.9968,  0.0802)
( )

g
g

∇= = − −
∇

ua
u

. 

 
Applying Eq. 7.45 again produces a new point,  
 

 2 1 3.0902( 0.9968, 0.0802) (3.0806, 0.24781)β= − = − − − =u a  
 

 The convergence is achieved after iteration 3. Table 7.6 shows the convergence history.  
  

 
Table 7.6 MPP Search History 

Iteration g  g∇  ( , )x yU U  
0 0.67076 (-0.37268, -0.046585) (3.0664, 0.3833) 
1 -0.53073 (-0.39663, -0.03191) (3.0803, 0.24781) 
2 -0.53196 (-0.39718, -0.031483) (3.0806, 0.24418) 
3 -0.53196 (-0.39719, -0.031472) (3.0806, 0.24409) 
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The MPP is found at * (3.0806, 0.24409)=u , and the percentile value of the performance 
function is 0.001 -0.53196g = . The probability of the performance function less than 

0.001 -0.53196g =  is equal to 0.001. 
 
 

7.6 Sensitivity Analysis 
 
Reliability analysis is used to evaluate a given design. If the reliability analysis result 
shows that the reliability is not satisfactory, i.e., lower than the required reliability, there 
are several ways to improve the reliability. Some of them are 
 
(1) To change the mean values of the random variables, 
(2) To reduce the variances of the random variables, and 
(3) To truncate the distributions of the random variables. 
 
When the number of random variables is large, it is difficult to change the distributions of 
all the random variables. It is also not economic to control all the random variables. To 
effectively improve the design, a question of interest is: For which random variables we 
should make changes to order to improve reliability?  To answer this question, we need to 
perform sensitivity analysis. With the information of sensitivity, we will be able to 
identify the most significant random variables. Only the important variables need to be 
managed. The sensitivity analysis can give us right directions for the improvement.  
 
Reliability sensitivity analysis is used to find the rate of change in the probability of 
failure (or reliability) due to the changes in the parameters (usually mean and standard 
deviation) of distributions. For a distribution parameter p of random variable iX , the 
sensitivity is defined by 
 

 f
p

p
s

p

∂
=

∂
 (7.48) 

 

ps  can be derived as follows. 
 

 
( ) ( ) ( )f

p

p
s

p p p p
β β β βφ β

β

∂ ∂Φ − ∂Φ − ∂ ∂= = = = − −
∂ ∂ ∂ ∂ ∂

 (7.49) 

 
The derivative of the reliability index with respect to the distribution parameter is given 
by 

 

 
*

*
i

i

u
p u p
β β∂ ∂ ∂

=
∂ ∂ ∂

 (7.50) 

 
where  

從sensitivity的信息，我們可以識別最顯著的隨機變量
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 (7.51) 

and from Eq. 7.4 
 
 * 1 *( ) ( )

ii X iu F x w p−  = Φ =   (7.52) 
 

where 1 *( ) ( )
iX iw p F x−  = Φ    is a function of the distribution parameter p. 

 
Therefore, 

 

 
*
iu w

p p
β

β
∂ ∂=
∂ ∂

 (7.53) 

 
and 

 

 
*

( )f i
p

p u ws
p p

φ β
β

∂ ∂= = − −
∂ ∂

 (7.54) 

 
Using Eq. 7.54, we can calculate the sensitivity of the mean and standard deviation of 
random variables Xi as follows. 
 

 
*

( )
i

f i

i i

p u w
sµ φ β

µ β µ

∂ ∂
= = − −
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 (7.55) 

 
and 
 

 
*

( )
i

f i

i i

p u w
sσ φ β

σ β σ

∂ ∂
= = − −

∂ ∂
 (7.56) 

 
respectively. 
 
For a normal distributed random variable ( , )i i iX N µ σ∼  
 

 
* *

1 * 1( , ) ( ) ( )
i

i i i i
i i X i

i i

x x
w F x

µ µ
µ σ

σ σ
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1

i i

w
µ σ

∂
= −

∂
 (7.58) 

 
And 
 

 
* *

2
i i i

i i i

w x uµ
σ σ σ

∂ −
= − = −

∂
 (7.59) 

 
Therefore, 
 

 
*

( )
i

f i

i i

p u
sµ φ β

µ βσ

∂
= = −

∂
 (7.60) 

 
and 
 

 
( )2*

( )
i

if

i i

up
sσ φ β

σ βσ

∂
= = −

∂
 (7.61) 

 
 Example 7.6  
  
 Calculate the sensitivity of random variables for Example 7.2. 
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From the sensitivity results, we can draw the following conclusions. 
 
1) Because the sign of each sensitivity is positive, if we increase each of the means and 
standard deviations of the external forces Px and Py, the probability of failure will 
increase. Therefore, we need to reduce the means or standard deviations of the two 
random variables, or their combinations, to improve the reliability.  
 
2) Since the sensitivity of the mean and the standard deviation of Px is greater than that of 
Py, for the same change in the means or standard deviations, Px will have more significant 
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impact on the reliability change than Py. In this sense, Px is more important than Py. If the 
parameters of one random variable would be allowed to change due to cost concern, we 
would make changes on Px. 
 

 

7.7 Conclusion 
 
We have discussed how to estimate the reliability, which is defined as the probability that 
a performance function (performance) is safe. Two most commonly used reliability 
analysis methods FORM and SORM have been discussed. 
 
It is noted that the reliability analysis methods are used for evaluating a specific 
probability at the limit state, and they are not intended for generating a complete 
distribution of a performance function or its statistical moments. However, if different 
values that cover the range of distribution of the performance function are used as limit 
states, FORM or SORM is applicable to generating the whole distribution of the 
performance function. For example, the cdf of a performance function ( )g X  at a 
particular value c is calculated by { }( ) ( )gF c P g c= <X . If a new function is defined by 

'( ) ( )g g c= −X X , the cdf estimation becomes { }'( ) ( ) 0gF c P g= <X . Then FORM or 
SORM is applicable to estimate the cdf , which is the probability of failure for function 

'( ) ( )g g c= −X X . 
 
Since both FORM and SORM approximate a performance function at the MPP, the 
accuracy of the methods depends upon how accurate the approximated performance 
function is in U-space. If the performance function in U-space is close to a linear function 
when FORM is used, or close to a quadratic function when SORM is used, both methods 
will produce accurate reliability estimations. If the performance function is highly 
nonlinear in U-space, both methods may generate a larger error. Even though a 
performance function is close to linear in X-space, it may become highly nonlinear in U-
space because the normal to non-normal transformation from X-space to U-space is 
nonlinear. Only under very special cases, for example, the random variables are normally 
distributed, the transformation is linear. Generally, SORM is more accurate than SORM 
even though there exist some counter examples where the former is less accurate than the 
latter. 
 
As for efficiency, FORM is more efficient than SORM since the former uses only the 
first order derivative and the latter uses both first and second order derivatives. It is noted 
that a single reliability analysis needs to perform a number of deterministic analyses on 
the performance function for the MPP search. For many engineering problems, a 
performance function is expensive to evaluate, and no analytical derivative exists. When 
the derivative has to be evaluated numerically, the computational effort will be 
approximated proportional to the number of random variables. Therefore, both FORM 
and SORM may not be applicable for large scale problems, and we have to resort to 
Monte Carlo simulation or other approximation methods that will be discussed in what 
follows.  

form更高效

large scale問題：FORM SORM不適合 ---> 需要Monte Carlo模擬
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